AR Model
Description
An autoregressive model specifies that the dependent variable depends linearly on its own previous values and on a stochastic term.
$$ X_t = c + \sum_{i=1}^p \varphi_i X_{t-i}+ \varepsilon_t $$
This relation can also be represented with a lag operator $ L $:
$$ X_t = c + \sum_{i=1}^p \varphi_i L^i X_t + \varepsilon_t $$
Returns
- $ L_{i} $: Lag coefficients
- MSE: Mean squared error
- Yh: Predicted values