GARCH

Time Series Volatility

regtvp

Description

Consider the following.

  • Autocorrelation in squared returns
  • Volatility clustering
  • Conditional Normality i.e. f(yyt1)N(0,α0+α1yt12) f(y | y_{t-1}) \sim N(0, \alpha_{0} + \alpha_{1} y^{2}_{t-1})

The following relation would seek to model the above:

σt2=α0+i=1qαiuti2+i=1pβiσti2 \sigma_{t}^{2} = \alpha_{0} + \sum_{i=1}^{q}\alpha_{i}u_{t-i}^{2} + \sum_{i=1}^{p}\beta_{i}\sigma_{t-i}^{2}

p p specifies the GARCH parameter where p>=0 p >= 0 and q q specifies the ARCH parameter where q>=1 q >= 1

GARCH(p, q) models attempt to capture volatility dynamics in time series. When p=0 p = 0 , it is simply an ARCH(q) model. The key difference between the two is that GARCH captures long run volatility whereas ARCH models end their volatility capture at lag q.

Inputs

  • xtol: tolerance for convergence test
  • Optimizer: Sbplx, Nelder Mead

Returns

  • coef: Coefficient estimates for gg for GARCH parameters and aa for ARCH parameters
  • serr: Standard Errors calculated via Outer Product Gradient method
  • tstat: t-statistics
  • pval: p-values